$$
A=\frac{n a s}{2} \text { or } A=\frac{a \cdot p}{2}
$$

Lesson 8.4•Areas of Regular Polygons

Period \qquad Date \qquad
In Exercises 1-3, the polygons are regular.

1. $s=12 \mathrm{~cm}$
$a \approx 14.5 \mathrm{~cm} \quad A=\frac{8(12)(14.5)}{2}$
\qquad

2. $s=4.2 \mathrm{~cm} \quad 2 \cdot 197=\frac{12(4.2) a}{2} \cdot 2$
$A \approx 197 \mathrm{~cm}^{2}$
$\frac{394}{50 \cdot 4}=\frac{-50 \cdot 4 a}{50 \cdot 4}$
$a \approx$ \qquad $7.82 \mathrm{~cm} \approx a$
3. $a=6 \mathrm{~cm}$
$2 \cdot 130 \cdot 8=\frac{5(6) s}{2} 2$
$A \approx 130.8 \mathrm{~cm}^{2} \frac{261.6}{30}=\frac{30 \mathrm{~s}}{30}$
\qquad $872 \mathrm{~cm}=5$

4. In a regular n-gon, $s=4.8 \mathrm{~cm}, a \approx 7.4 \mathrm{~cm}$, and $A \approx 177.6 \mathrm{~cm}^{2}$. Find n.
$2 \cdot 177.6=\frac{4.8(7.4) n}{2} z$

$$
\frac{355.2}{35.52}=\frac{35.52(n)}{35.52}
$$

$$
10=n
$$

Oraw a regular pentagon so that
permmer 20 cm . Use the oular Polygon Area Conjectur nd centimeter ruler to find its approv rate ar

 construn regular oct son and its apothem. - a Atimeter ruler to measure its sid leng, and apothem, and use the B oular Polygon Conjecture to find approximate area.
7. Find the of the shaded reg: oetween the square and the regular octagorm $\sim \sim$ n. $r=3 \mathrm{~cm}$.

Lesson 8.5•Areas of Circles

\qquad
\qquad Date \qquad

In Exercises 1-4, write your answers in terms of π.

1. If $r=9 \mathrm{~cm}, A=\underline{81 \pi \mathrm{~cm}^{2}}$

$$
A=9^{2} \cdot \pi=81 \pi
$$

2. If $d=6.4 \mathrm{~cm}, A=10.24 \pi$

$$
\begin{aligned}
& \downarrow \\
& r=3.2 \\
& A=(3.2)^{2} \pi
\end{aligned}
$$

4. If $C=36 \pi \mathrm{~cm}, A=324 \pi \mathrm{~cm}^{2}$

$$
\stackrel{\downarrow}{V=18 \rightarrow(18)^{2} \pi-}
$$

$$
\begin{aligned}
& \frac{529 \pi 4}{\pi}=\frac{r^{2} \pi}{\pi} \\
& \sqrt{529}=\sqrt{r^{2}}
\end{aligned} \rightarrow r=23
$$

In Exercises 5-8, round your answers to the nearest 0.01 unit. Keep answers in terms
5. If $r=7.8 \mathrm{~cm}, A \approx 60.8 \pi \mathrm{~cm}^{2}$

$$
(7.8)^{2} \pi
$$

6. If $A=136.46, C \approx 3.2 \pi$ un.

$$
\begin{aligned}
\frac{136.46}{\pi} & =\frac{r^{2} \pi}{\pi} \leftarrow \text { use } 3.14 \\
\sqrt{43.46} & =\sqrt{r^{2}} \\
6.6 & =r
\end{aligned}
$$

$$
\pi \quad \begin{aligned}
\sqrt{43.46} & =\sqrt{r^{2}} \\
66 & =r
\end{aligned}
$$

7. If $\begin{aligned} d & =3.12, A \approx 2.4 \pi u n^{2} \\ r= & =1.56 \rightarrow(1.56)^{2} \pi\end{aligned}$

$$
\stackrel{v}{r}=1.56 \rightarrow(1.56)^{2} \pi
$$

8. If $C=7.85, A \approx \frac{1.6 \pi u n^{2}}{\pi} \cdot \frac{7.85}{2 \pi}=\frac{2 r \pi}{2 \pi}$

For Exert 9 and 10, refer to the figure of a ie inscribed in an equilater triangle. Round your apo us to the nearest 0.1 unit.
9. Find the area of the rimed circle.
10. Gi Me area of the shaded region.
exercises 11 and 12, find the ea of the shaded sion. Write your ans rs in terms of π.
11. $A B \quad D$ is a square.

12. Th three circle are tangent.

Lesson 8.6•Any Way You Slice It

Name \qquad Period \qquad Date \qquad
$\frac{C A}{340}=\frac{\text { Sector Area }}{\pi r^{2}}$
In Exercises 1-6, find the area of the shaded region. Write your answers in

1.

$$
\frac{3 \phi}{360}=\frac{x}{(5)^{2} \pi}
$$

$$
25 \pi \cdot \frac{1}{12}=\frac{x}{25 \pi} \cdot 25 \pi
$$

$$
2 \frac{25}{12} \pi \mathrm{~cm}^{2}=x
$$

2.

$$
\frac{24 b}{360}=\frac{x}{(4)^{2} \pi}
$$

$$
16 \pi \cdot \frac{2}{3}=\frac{x}{16 \pi} \pi \cdot 16 \neq \pi
$$

5.

8. Shaded area is $54 \pi \mathrm{~cm}^{2}$. Find x.

Discovering Geometry Practice Your Skills ©2008 Key Curriculum Press
4.

7. Shaded area is $40 \pi \mathrm{~cm}^{2}$.

Find r.

